as a "refocusing routine" and this brings us directly from $D(1)$ to $D(4)$.

$$
\begin{align*}
& D(1) \xrightarrow{180 \times A}+\left(p^{\prime} / n\right)\{z 1\}+q^{\prime}\{1 y\} \\
& \xrightarrow{t_{e}(\text { shift })}\left(p^{\prime} / n\right)\{z 1\}+q^{\prime} \cos \Omega_{X} t_{e}\{1 y\}-q^{\prime} \sin \Omega_{X} t_{e}\{1 x\} \tag{II.42}
\end{align*}
$$

D(4)

With the assumption that $\Delta_{1}=1 / 2 J$ (i.e., $\pi J \Delta_{1}=\pi / 2$) we have

$$
\begin{gather*}
D(4) \xrightarrow{\Delta_{1}(J)}\left(p^{\prime} / n\right)\{z 1\}-q^{\prime} \cos \Omega_{X} t_{e}\{z x\}-q^{\prime} \sin \Omega_{X} t_{e}\{z y\} \\
\left(p^{\prime} / n\right)\{z 1\}-q^{\prime} \cos \Omega_{X} t_{e}\left(c^{\prime}\{z x\}+s^{\prime}\{z y\}\right) \tag{II.43}\\
-q^{\prime} \sin \Omega_{X} t_{e}\left(c^{\prime}\{z y\}-s^{\prime}\{z x\}\right) \\
\text { D(5) }
\end{gather*}
$$

where c^{\prime}, s^{\prime} have the same meaning as in (II.29), i.e.,

$$
c^{\prime}=\cos \Omega_{X} \Delta_{1} \quad ; \quad s^{\prime}=\sin \Omega_{X} \Delta_{1}
$$

Using again the trigonometric relations for the sum of two angles as we did in (II.30) we rewrite $D(5)$ as:

$$
\begin{align*}
& D(5)=\left(p^{\prime} / n\right)\{z 1\}-q^{\prime}\{z x\} \cos \Omega_{X}\left(t_{e}+\Delta_{1}\right)-q^{\prime}\{z y\} \sin \Omega_{X}\left(t_{e}+\Delta_{1}\right) \\
& D(5) \xrightarrow{90 x X}\left(p^{\prime} / n\right)\{z 1\}-q^{\prime}\{z x\} \cos \Omega_{X}\left(t_{e}+\Delta_{1}\right)-q^{\prime}\{z z\} \sin \Omega_{X}\left(t_{e}+\Delta_{1}\right) \tag{II.44}\\
& \text { D(6) } \\
& D(6) \xrightarrow{90 \times A}-\left(p^{\prime} / n\right)\{y 1\}+q^{\prime}\{y x\} \cos \Omega_{X}\left(t_{e}+\Delta_{1}\right)+q^{\prime}\{y z\} \sin \Omega_{X}\left(t_{e}+\Delta_{1}\right) \tag{II.45}
\end{align*}
$$

D(7)
$D(7)=-\left(p^{\prime} / n\right)\{y 1\}+q^{\prime}\{y z\} \sin \Omega_{x}\left(t_{e}+\Delta_{1}\right)+$ NOT
Up to this point we have followed step by step the calculations in Section II.9, while formally replacing [] by \{ \} and using p^{\prime} / n instead of p^{\prime}. This procedure is always valid for rotations (pulses) and in this case it was allowed for evolutions as stated in Appendix L, rule \#4.

For the coupled evolution Δ_{2} we can concentrate on the observable terms $\{x 1\},\{y 1\}$ only and take advantage of the exception
stated in Appendix L, rule \#5.

$$
\begin{align*}
& D(7) \xrightarrow{\Delta_{2}}-\left(p^{\prime} / n\right)\left(-s C^{n}\{x 1\}+c C^{n}\{y 1\}\right) \tag{II.47}\\
& +q^{\prime} \sin \Omega_{x}\left(t_{e}+\Delta_{1}\right)\left(-c S C^{n-1}\{x 1\}-s S C^{n-1}\{y 1\}\right)+\mathrm{NOT}
\end{align*}
$$

D(8)
$n=$ number of magnetically equivalent X nuclei (e.g., number of protons in CH_{n}).

$$
c=\cos \Omega_{A} \Delta_{2} \quad C=\cos \pi J \Delta_{2}
$$

$$
S=\sin \Omega_{A} \Delta_{2} \quad S=\sin \pi J \Delta_{2}
$$

In order to separate the effect of shift (c and s) and coupling (C and S) we rewrite $\mathrm{D}(8)$ as

$$
\begin{equation*}
D(8)=-\left(p^{\prime} / n\right) C^{n}(c\{y 1\}-s\{x 1\})-q ' \sin \Omega_{X}\left(t_{e}+\Delta_{1}\right) S C^{n-1}(c\{x 1\}+s\{y 1\}) \tag{II.48}
\end{equation*}
$$

Here again the second term is the true 2D signal while the first one generates axial peaks in the 2D picture since it does not contain the frequency Ω_{X}.

The value $\Delta_{2}=1 / 2 J$, which implies $S=1$ and $C=0$, is not suitable anymore because it nulls the useful 2D signal for any $\mathrm{n}>1$. We will discuss later the optimum value of Δ_{2}.

In writing the magnetization components we have to follow the procedure stated as rule \#6 in Appendix L.

$$
\begin{align*}
& M_{x A}(8)=-\left(n M_{o A} / p^{\prime}\right)(\text { coefficient of }\{x 1\}) \\
& =-M_{o A} C^{n} \sin \Omega_{A} \Delta_{2}+n M_{o A}\left(q^{\prime} / p^{\prime}\right) S C^{n-1} \sin \Omega_{X}\left(t_{e}+\Delta_{1}\right) \cos \Omega_{A} \Delta_{2} \\
& M_{y A}(8)=-\left(n M_{o A} / p^{\prime}\right)(\text { coefficient of }\{y 1\}) \\
& =M_{o A} C^{n} \cos \Omega_{A} \Delta_{2}+n M_{o A}\left(q^{\prime} / p^{\prime}\right) S C^{n-1} \sin \Omega_{X}\left(t_{e}+\Delta_{1}\right) \sin \Omega_{A} \Delta_{2} \\
& M_{T A}(8)=M_{x A}(8)+i M_{y A}(8) \\
& =i M_{o A} C^{n} \exp \left(i \Omega_{A} \Delta_{2}\right)+n M_{o A}\left(q^{\prime} / p^{\prime}\right) S C^{n-1} \sin \Omega_{X}\left(t_{e}+\Delta_{1}\right) \exp \left(i \Omega_{A} \Delta_{2}\right) \\
& =M_{o A}\left[i C^{n}+n\left(q^{\prime} / p^{\prime}\right) S C^{n-1} \sin \Omega_{X}\left(t_{e}+\Delta_{1}\right)\right] \exp \left(i \Omega_{A} \Delta_{2}\right) \tag{II.49}
\end{align*}
$$

The decoupled evolution t_{d} during which the detection takes place is treated the same way it was done in II.9, as a rotation about Oz .

$$
\begin{align*}
& M_{T A}(9)=M_{T A}(8) \exp \left(i \Omega_{A} t_{d}\right) \\
& =M_{o A}\left[i C^{n}+n\left(q^{\prime} / p^{\prime}\right) S C^{n-1} \sin \Omega_{X}\left(t_{e}+\Delta_{1}\right)\right] \exp \left[i \Omega_{A}\left(t_{d}+\Delta_{2}\right)\right] \tag{II.50}
\end{align*}
$$

The enhancement factor of the 2D term is

$$
n\left(q^{\prime} / p^{\prime}\right) S C^{n-1} .
$$

Now we can discuss the optimum value of Δ_{2}. In Figure II. 4 the value of the product $n S C^{n-1}$ is plotted versus $\Delta_{2} J$ for $n=1,2$ and 3 . The optimum Δ_{2} values are:

$$
\begin{align*}
& n=1(\mathrm{CH}) \longrightarrow \Delta_{2}=0.5 / \mathrm{J} \\
& n=2\left(\mathrm{CH}_{2}\right) \longrightarrow \Delta_{2}=0.25 / \mathrm{J} \tag{II.51}\\
& n=3\left(\mathrm{CH}_{3}\right) \longrightarrow \Delta_{2}=0.196 / \mathrm{J}
\end{align*}
$$

A good compromise is $\Delta_{2}=0.3 / J$ for which all three expressions $S, 2 S C$, and $3 S C^{2}$ have values exceeding 0.8 . The bad news is that this Δ_{2} value does not cancel the axial peak, represented by the term $i C^{n}$ in (II.50).

Figure II.4. Dependence of the factor $n S C^{n-1}$ (S for CH, 2SC for CH_{2}, and $3 \mathrm{SC}^{2}$ for CH_{3}) on $\Delta_{2} \mathrm{~J}$.

